Design of Broaching Tool Using Finite Element Method for Achieving the Lowest Residual Tensile Stress in Machining of Ti6Al4V Alloy

Authors

  • H. Amirabadi Department of Mechanical Engineering, University of Birjand, Birjand, Iran
  • J. Sadri Department of Computer Science & Software Engineering, Concordia University, Montreal, Canada
  • P. Khanjanzadeh Department of Mechanical Engineering, University of Birjand, Birjand, Iran
Abstract:

The aim of this study, is to use finite element simulation to achieve the optimal geometry of a broaching tool that creates the lowest tensile stress at the machined surface of the Ti6Al4V alloy. It plays a major role in reducing production costs and improves the surface integrity of the machined parts. The type and amount of residual stress determined by the thermal and mechanical loads transmitted to the workpiece. In this research, the two-dimensional simulation of the broaching process is done by finite element DEFORM-2D® software for the two end teeth of the tool that perform the cutting operation. In simulating the first tooth, Response Surface Method is used to select the desired controllable parameters of the process such as cutting speed, rake angle, clearance angle, rise per tooth and depth of cut. In order to establish low thermal and high mechanical load in workpiece, multi-objective genetic algorithm employed after perform simulation in the first tooth. In simulating the second tooth, Response Surface Method used to select desired controllable parameters of the process such as rake angle, clearance angle and radius of cutting edge. For the second tooth, a multi-objective genetic algorithm has been used. Ultimately, the geometry of the broaching tool utility has been designed to store the lowest tensile residual stresses in the machined surface for Ti6Al4V alloy.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Finite Element Modeling to Verify Residual Stress in Orthogonal Machining

The aim of this thesis paper, to create a numerical model to examine the residual stresses induced by orthogonal machining in the finished work piece and the model is validated by comparing with experimental result. The finite element method is used to simulate and analyze the residual stresses induced by a orthogonal metal cutting process. A Dynamics explicit time integration technique with Ar...

full text

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

An investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests

The geometric optimization of orthopedic screws can considerably increase their orthopedic efficiency. Due to the high geometric parameters of orthopedic screws, a finite element simulation is an effective tool for analyzing and forecasting the effect of the parameters on the load-bearing capacity of different types of screws and bones. Thus, in the present study, the tensile strength of a typi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 33  issue 4

pages  657- 667

publication date 2020-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023